动物实验周围神经损伤模型的研究进展
作者:
作者单位:

1.河南中医药大学第一附属医院 儿科,河南 郑州 450000;2.上海中医药大学 附属岳阳中西医结合医院 推拿科,上海 200437

通讯作者:

严隽陶,E-mail:doctoryjt@sohu.com

中图分类号:

R745

基金项目:

国家自然科学基金面上项目(No:81373764);河南省特色骨干学科中医学学科建设项目(No:STG-ZYXKY-2020023);河南省中医药科学研究专项课题(No:2019JDZX2006,2019JDZX2053)


Advances in experimental animal models of peripheral nerve injury
Author:
Affiliation:

1.Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan 450000, China;2.Department of Tuina, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    周围神经损伤动物模型的复制方法包括手术器械损伤、物理因素损伤及其他损伤,目前被普遍认可及广泛应用的模型有横断伤、钳夹伤、卡压伤等。动物实验的关键是,根据实验目的及临床研究需求,选择合适的动物模型,并对动物模型进行优化总结。该文通过对周围神经损伤动物实验研究的相关文献进行检索,对现阶段模型复制的研究进展作出综述。

    Abstract:

    The approaches to establishing animal models of peripheral nerve injury include inducing injuries with surgical instruments, physical factors and other methods. At present, widely accepted and applied models are transection injury, clamping injury and compression injury. The key to animal experiments is to select appropriate animal models and optimize and summarize them according to experimental purposes and clinical research needs. Through searching relevant literature, this review summarizes the advances in animal model establishment currently available for peripheral nerve injury.

    参考文献
    [1] BURNETT M G, ZAGER E L. Pathophysiology of peripheral nerve injury: a brief review[J]. Neurosurgical Focus, 2004, 16(5): E1.
    [2] SUNDERLAND S. A classification of peripheral nerve injuries producing loss of function[J]. Brain A Journal of Neurology, 1951, 74(4): 491.
    [3] REUCK J D. Biometrical and histochemical comparison between extra- and intra-fusal muscle fibres in denervated and re-innervated rat muscle[J]. Acta Neuropathologica, 1973, 25(4): 249-258.
    [4] DEDKOV E I, KOSTROMINOVA T Y, BORISOV A B, et al. Resistance vessel remodeling and reparative angiogenesis in the microcirculatory bed of long-term denervated skeletal muscles[J]. Microvascular Research, 2002, 63(1): 96-114.
    [5] ISAACS J, MALLU S, WO Y, et al. A rodent model of partial muscle re-innervation[J]. Journal of Neuroscience Methods, 2013, 219(1): 183-187.
    [6] 马书杰, 严隽陶, 陶然, 等. 推拿手法联合跑台训练促进大鼠坐骨神经再生的效果[J]. 中国康复理论与实践, 2016, 22(11): 1276-1280.
    [7] 张伟才. 生物活性人工神经修复周围神经缺损的基础研究及临床应用[D]. 广州: 南方医科大学, 2014.
    [8] OHAN S M, MICHAEL R A, SWETHA R, et al. Aligned microchannel polymer-nanotube composites for peripheral nerve regeneration: small molecule drug delivery[J]. Journal of Controlled Release, 2019, 296(2): 54-67.
    [9] FEKRAZAD R, MORTEZAI O, PEDRAM M S, et al. Transected sciatic nerve repair by diode laser protein soldering[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 173(8): 441-447.
    [10] 苏静, 孙志, 沈素娥, 等. 温针灸对坐骨神经离断大鼠术后神经功能康复的影响[J]. 中国中医基础医学杂志, 2016, 22(11): 98-100.
    [11] EDUARDO A, CASTILLA S, LUQUE E, et al. Denervated muscle extract promotes recovery of muscle atrophy through activation of satellite cells. An experimental study[J]. Journal of Sport and Health Science, 2019, 8(1): 23-31.
    [12] SU Z, HU L, CHENG J Z, et al. Acupuncture plus low-frequency electrical stimulation (Acu-LFES) attenuates denervation-induced muscle atrophy[J]. Journal of Applied Physiology, 2016, 120(4): 426-436.
    [13] 郭汝宝, 张喜林, 严隽陶. 推拿手法对家兔失神经支配骨骼肌复合动作电位及收缩功能的影响[J]. 中华中医药学刊, 2017, 35(1): 140-142.
    [14] 吴珍元, 黄英如, 冼华, 等. 电针对失神经骨骼肌萎缩及纤维化的影响[J]. 中国康复医学杂志, 2016, 31(2): 177-182.
    [15] GEUNA S, RAIMONDO S, RONCHI G, et al. Chapter 3: histology of the peripheral nerve and changes occurring during nerve regeneration[J]. International Review of Neurobiology, 2009, 87(3): 27-46.
    [16] GUTMANN E, SANDERS F K. Recovery of fibre numbers and diameters in the regeneration of peripheral nerves[J]. the Journal of Physiology, 1943, 101(4): 489-518.
    [17] PAN F, YU T Y, WONG S, et al. Chinese tuina downregulates the elevated levels of tissue plasminogen activator in sciatic nerve injured Sprague-Dawley rats[J]. Chinese Journal of Integrative Medicine, 2017, 23(8): 617-624.
    [18] KARASAWA M, YOKOUCHI K, KAWAGISHI K, et al. Effects of repeated nerve injuries at different time intervals on functional recovery and nerve innervation[J]. Journal of Clinical Neuroscience, 2018, 48(2): 185-190.
    [19] MIRZAKHANI N, FARSHID A A, TAMADDONFARD E, et al. Carnosine improves functional recovery and structural regeneration after sciatic nerve crush injury in rats[J]. Life Sciences, 2018, 215(10): 22-30.
    [20] AGNES E H, MARIA R B, GORDON P, et al. Laminin polymer treatment accelerates repair of the crushed peripheral nerve in adult rats[J]. Acta Biomaterialia, 2019, 86(3): 185-193.
    [21] SUZUKI K, TANAKA H, EBARA M, et al. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model[J]. Acta Biomaterialia, 2017, 53(4): 250-259.
    [22] LI R, WU J, LIN Z K, et al. Single injection of a novel nerve growth factor coacervate improves structural and functional regeneration after sciatic nerve injury in adult rats[J]. Experimental Neurology, 2017, 288(2): 1-10.
    [23] KERNS J M, BRAVERMAN B, MATHEW A, et al. A comparison of cryoprobe and crush lesions in the rat sciatic nerve[J]. Pain, 1991, 47(1): 31-39.
    [24] DELEO J A, COOMBS D W. Autotomy and decreased spinal substance P following peripheral cryogenic nerve lesion[J]. Cryobiology, 1991, 28(5): 460-466.
    [25] DELEO J A, COOMBS D W, WILLENBRING S, et al. Characterization of a neuropathic pain model: sciatic cryoneurolysis in the rat[J]. Pain, 1994, 56(1): 9-16.
    [26] JIA J, POLLOCK M. The pathogenesis of non-freezing cold nerve injury. observations in the rat[J]. Brain A Journal of Neurolog, 1997, 120(4): 631-646.
    [27] 李浩, 张磊, 徐敏. 坐骨神经非冻结性冷损伤时血神经屏障损害的研究[J]. 中风与神经疾病杂志, 2016, 33(2): 104-108.
    [28] 赵曙光, 李辉, 范慧敏. 低温冷冻神经损伤与再生研究[J]. 同济大学学报(医学版), 2010, 31(4): 15-18.
    [29] MACKINNON S. Chronic nerve compression-An experimental model in the rat[J]. Ann Plast Surg, 1984, 13(2): 112-120.
    [30] ZHENG J, YANG M X, PEI J, et al. Experimental reseach of effects of chronic compression on the rat sciatic nerve[J]. Chinese Journal of Laboratory Animal Science, 2004, 14(4): 200-204.
    [31] BENNETT G J, XIE Y K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man[J]. Pain, 1988, 33(1): 87-107.
    [32] KHANGURA R K, BALI A, KAUR G, et al. Neuropathic pain attenuating effects of perampanel in an experimental model of chronic constriction injury in rats[J]. Retour Au Numéro, 2017, 94(10): 557-563.
    [33] XU L J, WANG Q X, JIANG W, et al. MiR-34c ameliorates neuropathic pain by targeting nlrp3 in a mouse model of chronic constriction injury[J]. Neuroscience, 2019, 399(2): 125-134.
    [34] YU J, WANG M, LIU T, et al. Effect of electroacupuncture on the expression of agrin and acetylcholine receptor subtypes in rats with tibialis anterior muscular atrophy induced by sciatic nerve injection injury[J]. Acupunct Med, 2017, 35(4): 268-275.
    [35] 黄晶, 王志刚. 低频超声对大鼠坐骨神经传导的影响[J]. 中国超声医学杂志, 1998(10): 4-6.
    [36] RONCHI G, NICOLINO S, RAIMONDO S, et al. Functional and morphological assessment of a standardized crush injury of the rat median nerve[J]. J Neurosci Methods, 2009, 179(1): 51-57.
    [37] GLUCK M J, VIJAYARAGHAVAN S, SINCLAIR E B, et al. Detecting structural and inflammatory response after in vivo stretch injury in the rat median nerve via second harmonic generation[J]. Journal of Neuroscience Methods, 2018, 303(6): 68-80.
    [38] HUANG C T, TSAI Y J. Docosahexaenoic acid confers analgesic effects after median nerve injury via inhibition of c-jun n-terminal kinase activation in microglia[J]. The Journal of Nutritional Biochemistry, 2016, 29(3): 97-106.
    [39] ALJAGHTHMI O, ABU ZEID I, HEBA H, et al. Histological difference of soleus muscle fibers due to sciatic nerve transection in rats[J]. Pathophysiology, 2018: DOI: 10.1016/j.pathophys.2018.08.006.
    [40] DAVID R G, JOAQUIM F, XAVIER N, et al. Boosted regeneration and reduced denervated muscle atrophy by neuroheal in a pre-clinical model of lumbar root avulsion with delayed reimplantation[J]. Scientific Reports, 2017, 7(1): 1-12.
    [41] SUZUKI K, TANAKA H, EBARA M, et al. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model[J]. Acta Biomaterialia, 2017, 53(4): 250-259.
    [42] GHAYOUR M B, ABDOLMALEKI A, RASSOULI M B. Neuroprotective effect of Lovastan on motor deficit induced by sciatic nerve crush in the rat[J]. European Journal of Pharmacology, 2017, 812(10): 121-127.
    [43] YANG Z, ZHEN S, LIU H L, et al. Effects of miR-26a-5p on neuropathic pain development by targeting MAPK6 in in CCI rat models[J]. Biomedicine & Pharmacotherapy, 2018, 107(10): 644-649.
    [44] WU J R, CHEN H, ZHANG D X, et al. Local injection to sciatic nerve of DEX reduces pain behaviors, SGCs activation, NGF expression and sympathetic sprouting in CCI rats[J]. Brain Research Bulletin, 2017, 132(6): 118-128.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孔亚敏,严隽陶,李华伟.动物实验周围神经损伤模型的研究进展[J].中国现代医学杂志,2021,(10):48-53

复制
分享
文章指标
  • 点击次数:211
  • 下载次数: 687
  • HTML阅读次数: 309
  • 引用次数: 0
历史
  • 收稿日期:2020-11-20
  • 在线发布日期: 2023-10-31
文章二维码