摘要
炎症性肠病(IBD)是一种与炎症及免疫相关的慢性肠道疾病,发病率逐年递增,是全球卫生问题的重大挑战。但是目前IBD确切的发病机制仍未十分清楚。腺苷酸活化蛋白激酶(AMPK)是一种高度保守的细胞能量保护器,在维持体内能量平衡中发挥了十分重要的作用。近年来研究发现,AMPK可通过增强肠道屏障功能、抑制炎症反应、抗纤维化、增强自噬等方面延缓炎症性肠病疾病的进展。该文对以上方面进行综述,为IBD提供新的治疗靶点。
关键词
炎症性肠病(inflammatory bowel diseases, IBD)是慢性肠道炎症及免疫相关性疾病,主要包括溃疡性结肠炎(ulcerative colitis, UC)和克罗恩病(crohn disease, CD
腺苷酸活化蛋白激酶(AMP-activated protein kinase, AMPK)是一种丝氨酸/苏氨酸蛋白激酶,广泛存在于真核细胞中,是维持细胞能量稳态的感受器。AMPK有益于肠道健康,如调节肠道屏障、减轻肠道炎症及治疗肠道疾病等。因此,本文将对AMPK在肠道健康中扮演的作用进行综述,并分析AMPK成为IBD潜在治疗靶点的可行性。
AMPK是一种高度保守的细胞能量保护器,普遍存在于植物、哺乳动物、果蝇等真核细胞动物中,对维持能量平衡起着十分关键的作用。AMPK由3个亚基组成,分别为催化亚基α、调节亚基β和调节亚基γ,每个亚基具有许多亚型(α1、α2、β1、β2、γ1、γ2和γ3
肠道屏障是机体接触外部环境的最大表面,不仅参与营养物质的吸收,更有抵制细菌及毒素对机体的侵袭作用。机械屏障和免疫屏障构成了肠道屏障。
肠道机械屏障又被称作为物理屏障,以黏膜上皮、固有层和黏膜肌层为基
活化的AMPK通过上调TJ蛋白调控上皮屏障功能,增强肠道的屏障功
另外,CDX2是参与调节IECs分化的关键转录因子,主要在低分化的上皮细胞中表
肠道免疫屏障又称肠黏膜免疫屏障,功能主要依赖于肠黏膜。肠黏膜具有选择性通透性,不仅吸收养分,还在内外环境之间建立屏障。肠道免疫屏障的关键成分包括抗菌肽(antimicrobial peptides, AMPs)、分泌型免疫球蛋
分泌型免疫球蛋白A(secretory immunoglobulin A, SIgA)是一种二聚体抗体,在黏膜分泌物中最常见,可与IECs基底外侧表面的聚合免疫球蛋白受体结合,释放到肠腔内,并与各种肠道抗原相互作用,从而限制共生菌和可溶性抗原攻击肠上皮的能
IBD是一种由肠道炎症引起的免疫性疾病,当肠道发生炎症反应时,免疫细胞产生促炎细胞因子,触发T细胞的激活和中性粒细胞的聚集来抵御细菌侵袭。文献报道称,肠道炎症的进展主要因调节性T细胞不足、效应性T细胞过多和促炎细胞因子的过度产生,从而加重结肠
NF-κB的磷酸化和核转位可通过诱导促炎细胞因子的产生导致IBD的进展,这与ZHANG
巨噬细胞可通过产生许多关键的细胞因子(如抗炎因子IL-10、人精氨酸酶1,促炎因子TNF-α、IL-1β和IL-6等)参与IBD的发生、发展。在UC患者中,免疫失衡是因为包括巨噬细胞在内的免疫细胞产生过多的促炎细胞因
线粒体对于肠道干细胞正常分化和功能表达是不可或缺的。线粒体中pGC-1α是参与生物合成和呼吸的主要调节器,可调控抗氧化基因的表达。在UC患者的肠道中,线粒体氧化磷酸化和线粒体功能的相关基因表达减少。据RIUS-PÉREZ
越来越多的证据表明,IBD是由先天性和获得性免疫系统对共生微生物的不适当反应引
辅助性T细胞17(T helper 17, Th17)通过促炎细胞因子加重肠道炎症反应,而调节性T细胞(regulatory T, Treg)可维持肠道免疫耐受和平衡,两者在肠道微环境中参与IBD的发生、发展,因此纠正Th17与Treg细胞之间的失衡,有助于预防和治疗IB
UC是黏膜层及黏膜下层的炎症病变,而CD可累及口腔至肠道的任意部位,特点是全肠层透壁性炎
自噬是一种介导溶酶体将损伤及衰老的细胞、细胞内异常蛋白降解的程序性死亡方式。研究表明自噬及其相关基因通过病原体清除、免疫功能、调节炎症信号或抑制炎症体等途径参与IBD的免疫应
AMPK是细胞内关键的能量感受器,在均衡能量供需、协调各种细胞代谢途径中起关键作用,从而协调细胞和器官生长发
在结肠炎发展过程中,氧化应激会损伤肠道结构及功能,而自噬可通过清除衰老的细胞器和受损的蛋白质来降低细胞的氧化应激,对维持IECs的稳定起重要作用。自噬的标志物有轻链3(light chain 3, Lc3)、自噬相关蛋白5(autophagy-related protein 5, ATG5)、Beclin-1和P62。研究发现药用植物薯蓣皂苷,可引起自噬的发生,表现在ATG5和Lc3水平升高,P62水平降低,抑制了氧化应激,并使用化合物C(AMPK抑制剂)证明了薯蓣皂苷通过激活AMPK/mTOR信号通路参与自噬的调节,从而有效地缓解了结肠炎损伤程
AMPK作为细胞能量调节器,通过调节肠道屏障功能及多种途径下调肠道炎症免疫反应,从而对肠道组织产生保护作用。不少关于AMPK激动剂的体内外实验研究也表明AMPK可能成为治疗IBD的潜在靶点,且AMPK存在于多种植物化学物质中,这为天然产品在IBD的治疗提供了良好的前景。由于AMPK异三聚体的复杂性,现今大多数针对AMPK的研究多是针对其化合物的验证。因此,探索一种植物化学物质是否会对不同的AMPK亚型有类似的影响,这将是一个十分有挑战性和有趣的课题。与此同时,目前研究对象多以AMPK和UC的实验性研究为主,以CD作为研究对象的报道很少,并且针对AMPK的临床试验研究鲜有报道。因此,AMPK作为IBD的潜在治疗靶点仍需进行大量深入研究。
参 考 文 献
柴昕浩, 刘俊. 小分子Janus激酶抑制剂在炎症性肠病中的应用[J]. 中国现代医学杂志, 2020, 30(16): 50-54. [百度学术]
何琼,李建栋.炎症性肠病流行病学研究进展[J].实用医学杂志,2019,35(18):2962-2966. [百度学术]
ABDUL KHALIQ H, ALHOUAYEK M, QUETIN-LECLERCQ J, et al. 5'AMP-activated protein kinase: an emerging target of phytochemicals to treat chronic inflammatory diseases[J]. Crit Rev Food Sci Nutr, 2022: 1-26. Epub ahead of print. DOI: 10.1080/10408398.2022.2145264. [百度学术]
HERZIG S, SHAW R J. AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol, 2018, 19(2): 121-135. [百度学术]
MENG X F, ZHANG Y, BOTCHWAY B O A, et al. Role of AMP activated protein kinase signaling pathway in intestinal development of mammals[J]. Ann Anat, 2018, 220: 51-54. [百度学术]
CARLING D. AMPK signalling in health and disease[J]. Curr Opin Cell Biol, 2017, 45: 31-37. [百度学术]
ALGHAMDI F, ALSHUWEISHI Y, SALT I P. Regulation of nutrient uptake by AMP-activated protein kinase[J]. Cell Signal, 2020, 76: 109807. [百度学术]
MARÍN-AGUILAR F, PAVILLARD L E, GIAMPIERI F, et al. Adenosine monophosphate (AMP)-activated protein kinase: a new target for nutraceutical compounds[J]. Int J Mol Sci, 2017, 18(2): 288. [百度学术]
STEINBERG G R, CARLING D. AMP-activated protein kinase: the current landscape for drug development[J]. Nat Rev Drug Discov, 2019, 18(7): 527-551. [百度学术]
WU Z H, XU C F, ZHENG T H, et al. A critical role of AMP-activated protein kinase in regulating intestinal nutrient absorption, barrier function, and intestinal diseases[J]. J Cell Physiol, 2022, 237(10): 3705-3716. [百度学术]
ROWART P, WU J S, CAPLAN M J, et al. Implications of AMPK in the formation of epithelial tight junctions[J]. Int J Mol Sci, 2018, 19(7): 2040. [百度学术]
ZHANG B W, ZHANG Y H, LIU X X, et al. Differential protective effect of resveratrol and its microbial metabolites on intestinal barrier dysfunction is mediated by the AMPK pathway[J]. J Agric Food Chem, 2022, 70(36): 11301-11313. [百度学术]
OLIVIER S, DIOUNOU H, POCHARD C, et al. Intestinal epithelial AMPK deficiency causes delayed colonic epithelial repair in DSS-induced colitis[J]. Cells, 2022, 11(4): 590. [百度学术]
OLIVIER S, LECLERC J, GRENIER A, et al. AMPK activation promotes tight junction assembly in intestinal epithelial caco-2 cells[J]. Int J Mol Sci, 2019, 20(20): 5171. [百度学术]
CRISSEY M A S, GUO R J, FUNAKOSHI S, et al. Cdx2 levels modulate intestinal epithelium maturity and Paneth cell development[J]. Gastroenterology, 2011, 140(2): 517-528.e8. [百度学术]
SUN X F, YANG Q Y, ROGERS C J, et al. AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression[J]. Cell Death Differ, 2017, 24(5): 819-831. [百度学术]
GONZALEZ A, KRIEG R, MASSEY H D, et al. Sodium butyrate ameliorates insulin resistance and renal failure in CKD rats by modulating intestinal permeability and mucin expression[J]. Nephrol Dial Transplant, 2019, 34(5): 783-794. [百度学术]
WU W C, WANG S S, LIU Q, et al. Cathelicidin-WA attenuates LPS-induced inflammation and redox imbalance through activation of AMPK signaling[J]. Free Radic Biol Med, 2018, 129: 338-353. [百度学术]
KABAT A M, POTT J, MALOY K J. The mucosal immune system and its regulation by autophagy[J]. Front Immunol, 2016, 7: 240. [百度学术]
WU W D, ZHANG L, XIA B, et al. Modulation of pectin on mucosal innate immune function in pigs mediated by gut microbiota[J]. Microorganisms, 2020, 8(4): 535. [百度学术]
REN W K, YIN J, DUAN J L, et al. mTORC1 signaling and IL-17 expression: Defining pathways and possible therapeutic targets[J]. Eur J Immunol, 2016, 46(2): 291-299 [百度学术]
SUN X F, ZHU M J. AMP-activated protein kinase: a therapeutic target in intestinal diseases[J]. Open Biol, 2017, 7(8): 170104. [百度学术]
ZHANG X, ZHAO Y F, XU J, et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats[J]. Sci Rep, 2015, 5: 14405. [百度学术]
NEURATH M. Current and emerging therapeutic targets for IBD[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(11): 688. [百度学术]
ZHANG Y, GUO C C, LI Y R, et al. Alginate oligosaccharides ameliorate DSS-induced colitis through modulation of AMPK/NF-κB pathway and intestinal microbiota[J]. Nutrients, 2022, 14(14): 2864. [百度学术]
WANG Z, LI C H, HE X, et al. Platycodon grandiflorum root fermentation broth reduces inflammation in a mouse IBD model through the AMPK/NF-κB/NLRP3 pathway[J]. Food Funct, 2022, 13(7): 3946-3956. [百度学术]
GUO R Q, MENG Q Y, WANG B S, et al. Anti-inflammatory effects of Platycodin D on dextran sulfate sodium (DSS) induced colitis and E. coli lipopolysaccharide (LPS) induced inflammation[J]. Int Immunopharmacol, 2021, 94: 107474. [百度学术]
RIUS-PÉREZ S, TORRES-CUEVAS I, MILLÁN I, et al. PGC-1 α, inflammation, and oxidative stress: an integrative view in metabolism[J]. Oxid Med Cell Longev, 2020, 2020: 1452696. [百度学术]
TIAN Q Y, XU Z X, SUN Q, et al. Broccoli-derived glucoraphanin activates AMPK/PGC1α/NRF2 pathway and ameliorates dextran-sulphate-sodium-induced colitis in mice[J]. Antioxidants (Basel), 2022, 11(12): 2404. [百度学术]
KASER A, ZEISSIG S, BLUMBERG R S. Inflammatory bowel disease[J]. Annu Rev Immunol, 2010, 28: 573-621. [百度学术]
TAKAHARA M, TAKAKI A, HIRAOKA S, et al. Metformin ameliorates chronic colitis in a mouse model by regulating interferon-γ-producing lamina propria CD
YANG Y X, YUAN Y, XIA B N. Cinnamtannin D1 ameliorates DSS-induced colitis by preventing Th17/Treg imbalance through activation of the AMPK/mTOR pathway[J]. Allergol Immunopathol (Madr), 2022, 50(5): 153-161. [百度学术]
邬思远, 杨川华, 孙伟力, 等. 471例克罗恩病患者治疗方案分析[J]. 中国现代医学杂志, 2019, 29(17): 63-70. [百度学术]
XIE M H, XIONG Z Z, YIN S, et al. Adiponectin alleviates intestinal fibrosis by enhancing AMP-activated protein kinase phosphorylation[J]. Dig Dis Sci, 2022, 67(6): 2232-2243. [百度学术]
黄胜男, 李芳芳, 金丹. 自噬在炎症性肠病中作用机制的研究进展[J]. 细胞与分子免疫学杂志, 2022, 38(6): 559-564. [百度学术]
LÓPEZ M, NOGUEIRAS R, TENA-SEMPERE M, et al. Hypothalamic AMPK: a canonical regulator of whole-body energy balance[J]. Nat Rev Endocrinol, 2016, 12(7): 421-432. [百度学术]
KIM L C, COOK R S, CHEN J. mTORC1 and mTORC2 in cancer and the tumor microenvironment[J]. Oncogene, 2017, 36(16): 2191-2201. [百度学术]
LI H, PANG B, NIE B, et al. Dioscin promotes autophagy by regulating the AMPK-mTOR pathway in ulcerative colitis[J]. Immunopharmacol Immunotoxicol, 2022, 44(2): 238-246. [百度学术]
ZHANG H H, LANG W Y, LIU X, et al. Procyanidin a1 alleviates DSS-induced ulcerative colitis via regulating AMPK/mTOR/p70S6k-mediated autophagy[J]. J Physiol Biochem, 2022, 78(1): 213-227. [百度学术]