摘要
通过实时荧光定量聚合酶链反应(qRT-PCR)检测人正常口腔角质细胞系HOK和人口腔鳞状细胞癌细胞株TSCCA、SCCl5、HN13、CAL27、HSC3和SCC9中lncRNA UCA1和microRNA-206(miR-206)的表达;在HN13细胞中敲除IncRNA UCA1,采用CCK-8法和流式细胞术检测其对HN13细胞增殖和细胞凋亡的影响;通过生物信息学网站starBase预测IncRNA UCA1、YAP1与miR-206的互补结合位点,并通过双荧光素酶实验验证它们之间的结合关系;Western blotting检测YAP1蛋白的表达。
qRT-PCR结果显示,相比于人正常口腔角质细胞系HOK,6种OSCC细胞中lncRNA UCA1 mRNA相对表达量上调(P <0.05),而miR-206 mRNA相对表达量均降低(P <0.05)。与转染siNC的对照组相比,siUCA1组细胞活力下降,凋亡比例升高(P <0.05)。生物信息学预测结合双荧光素酶实验证实miR-206与lncRNA UCA1、YAP1均存在互补结合。qRT-PCR和Western blotting检测结果显示,siUCA1组miR-206 mRNA相对表达量较对照组升高(P <0.05),YAP1 mRNA相对表达量较对照组降低(P <0.05),而同时转染siUCA1和miR-206 inhibitor则抑制miR-206表达,恢复YAP1的表达(P <0.05)。
口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)是最常见的头颈部肿瘤之一,是全球第六大最常见的癌
HOK、TSCCA、SCCl5、HN13、CAL27、HSC3和SCC9细胞均购自中国科学院上海细胞库。细胞培养相关试剂均购自美国Gibco公司,Lipofectamine 3000和实时荧光定量聚合酶链反应(quantitative real-time polymerase chain reaction, qRT-PCR)相关试剂盒均购自美国Thermo Fisher Scientific公司,CCK-8试剂盒购自上海碧云天生物技术有限公司,YAP1一抗、二抗购自美国Cell Signaling Technology公司,RNA引物由北京擎科生物科技有限公司合成,UCA1、miR-206、YAP1、miR-206 mimics、miR-206 inhibitor均由上海吉玛制药技术有限公司设计合成,流式细胞分析仪购自美国贝克曼库尔特有限公司。
将HOK、TSCCA、SCCl5、HN13、CAL27、HSC3和SCC9细胞接种于含10%胎牛血清、青霉素(100 u/mL)、链霉素(100 μg/mL)的DMEM培养基中,在5%二氧化碳、饱和湿度、37℃培养箱中培养,每2~3天传代1次。
将2×1
采用TRIzol一步法提取细胞RNA,40 μL无核酸酶水溶解,置入-80℃冷冻保存。取0.5 μg总RNA,用逆转录试剂盒合成cDNA,再行PCR扩增目标基因。预先设计合成引物,将所得cDNA加至PCR反应体系中扩增目标片段。在待测样品中加入1 μL模板、1 μL正向引物、1 μL反向引物、5 μL SYBR探针和3 μL DEPC水避光混匀后,上机检测相关分子的表达。反应条件:95℃预变性15 min,94℃变性30 s,55℃退火30 s,72℃延伸30 s,共40个循环。GAPDH和U6作为内参,根据
基因 | 引物序列 | 引物长度/bp |
---|---|---|
UCA1 | 正向: 5'-TGACAACAGATAACCACCT-3' | 19 |
反向: 5'-TCCGTATAGAAGACCACCTA-3' | 20 | |
miR-206 | 正向: 5'-CGTCAGAAGGAATGATGCACAG-3' | 22 |
反向: 5'-ACCTGCGTAGGTAGTTTCATGT-3' | 22 | |
YAP1 | 正向: 5'-TAGCCCTGCGTAGCCAGTTA | 20 |
反向: 5'-TCATGCTTAGTCCACTGTCTGT-3' | 22 | |
GAPDH | 正向: 5'-CACCATTGGCAATGAGCGGTTC-3' | 22 |
反向: 5'-AGGTCTTTGCGGATGTCCACGT-3' | 22 | |
U6 | 正向: 5'-CTCGCTTCGGCAGCACATA-3' | 19 |
反向: 5'-AACGATTCACGAATTTGCGT-3' | 20 |
以2×1
将各组细胞培养至正常生长阶段,转染48 h后胰酶消化,用磷酸盐缓冲溶液(phosphate buffer saline, PBS)洗涤,1 000 r/min离心5 min,收集细胞;用预冷PBS重悬细胞1次,1 000 r/min离心5 min,洗涤细胞;加入300 μL Binding Buffer重悬细胞;再加入5 μL Annexin V-FITC混匀,避光,室温孵育15 min;加入5 μL PI染色5 min,补加200 μL Binding Buffer。用FlowJo 10分析细胞凋亡比率。
使用starBase(http://starbase.sysu.edu.cn/)预测miR-206与UCA1、YAP1的靶向结合位点。将含UCA1序列连接至双荧光素酶载体pGL3,得到pGL3-UCA1-WT载体。同时,通过定点突变将结合位点突变(MUT),构建突变质粒pGL3-UCA1-MUT。同理,构建pGL3-YAP1-WT和pGL3-YAP1-MUT质粒载体。将HN13细胞接种于96孔板中24 h,当细胞融合到50%~70%时,分别将UCA1-WT或UCA1-MUT质粒(YAP1-WT或YAP1-MUT)与mimics NC或miR-206 mimics同时转染HN13细胞。用双荧光素酶报告基因检测系统测定48 h荧光素酶相对活性。分别验证UCA1、YAP1的结合位点。
将各组细胞培养至对数生长期并转染24 h,胰酶消化并收集细胞,1 000 r/min离心5 min,PBS洗涤,用RIPA裂解液分离提取细胞样本中的全蛋白,BCA试剂盒检测蛋白浓度。蛋白行SDS-聚丙烯酰胺凝胶电泳后转至PVDF膜上,浸入含5%脱脂奶粉的TBST(封闭液)中,室温下摇床封闭2 h。加入YAP1一抗(1∶1 000),4℃共同孵育8 h。PBS洗涤3次,加入相应二抗(1∶5 000),震荡孵育2 h。洗膜后,加入化学发光试剂显色、胶片曝光。使用凝胶成像分析系统拍照,通过Image J软件计算YAP1蛋白灰度值。
qRT-PCR结果显示,HOK细胞lncRNA UCA1 mRNA相对表达量为(1.10±0.12)、TSCCA细胞为(1.98±0.23)、SCCl5细胞为(1.85±0.19)、HN13细胞为(3.02±0.18)、CAL27细胞为(2.32±0.15)、HSC3细胞为(1.97±0.18)、SCC9细胞为(2.59±0.15),经单因素方差分析,差异有统计学意义(F =37.580,P =0.000),TSCCA、SCCl5、HN13、CAL27、HSC3和SCC9细胞均较HOK细胞升高(P <0.05)。
HOK细胞miR-206 mRNA相对表达量为(1.06±0.10)、TSCCA细胞为(0.31±0.09)、SCCl5细胞为(0.42±0.07)、HN13细胞为(0.26±0.05)、CAL27细胞为(0.38±0.08)、HSC3细胞为(0.41±0.04)、SCC9细胞为(0.40±0.13),经单因素方差分析,差异有统计学意义(F =32.070,P =0.000),TSCCA、SCCl5、HN13、CAL27、HSC3和SCC9细胞均较HOK细胞降低(P <0.05)。其中HN13细胞miR-206 mRNA表达差异更显著,故选择该细胞株进行后续实验。
qRT-PCR结果显示,对照组lncRNA UCA1相对表达量为(1.05±0.08)、控制组为(1.05±0.10)、实验组为(0.21±0.07),经单因素方差分析,差异有统计学意义(F =99.991,P =0.000)。对照组与控制组比较,差异无统计学意义(P >0.05);对照组与实验组比较,差异有统计学意义(P <0.05),说明转染成功。
各组24 h、48 h、72 h和96 h的OD值比较,经重复测量设计的方差分析,结果:①不同时间点的OD值有差异(F =191.904,P =0.000);②各组OD值有差异(F =27.801,P =0.000),实验组低于对照组;③各组的OD值变化趋势有差异(F =9.042,P =0.000)。表明敲除lncRNA UCA1使细胞活力明显降低。见
组别 | 24 h | 48 h | 72 h | 96 h |
---|---|---|---|---|
控制组 | 0.19±0.05 | 0.32±0.04 | 0.50±0.04 | 0.88±0.10 |
对照组 | 0.21±0.03 | 0.31±0.03 | 0.51±0.03 | 0.99±0.13 |
实验组 | 0.21±0.05 | 0.25±0.03 | 0.35±0.03 | 0.56±0.06 |
流式细胞术结果显示,控制组凋亡率为(4.14±0.94)%、对照组为(4.04±1.46)%、实验组为(14.96±1.59)%,经单因素方差分析,差异有统计学意义(F =64.221,P =0.000)。对照组与控制组差异无统计学意义(P >0.05),实验组凋亡率较对照组升高(P <0.05),敲除lncRNA UCA1诱导细胞凋亡。见

图1 3组NH13细胞凋亡率比较
通过starBase数据库预测lncRNA UCA1与miR-206存在结合位点,并构建了突变序列(见

图2 lncRNA UCA1与miR-206的结合位点
将对照组均分为对照组1和对照组2,并分别转染siNC和过表达空载体;将实验组均分为实验组1和实验组2,实验组1和实验组2分别转染siUCA1和UCA1过表达载体。qRT-PCR结果显示,对照组1 miR-206相对表达量为(1.02±0.07)、实验组1为(2.34±0.23)、对照组2为(1.06±0.09)、实验组2为(0.22±0.08),经方差分析,差异有统计学意义(F =131.527,P =0.000),实验组1较对照组1升高(P <0.05),实验组2较对照组2降低(P <0.05)。
通过starBase预测miR-206与YAP1存在结合位点,并构建了突变序列(见

图3 miR-206与YAP1的结合位点
控制组不做任何处理,对照组1和对照组2分别转染mimics NC和inhibitor NC,实验组1和实验组2分别转染miR-206 mimics和inhibitor。qRT-PCR结果显示,对照组1的miR-206 mRNA相对表达量为(1.01±0.18)、对照组2为(1.04±0.21)、实验组1为(2.56±0.19)、实验组2为(0.22±0.08)、控制组为(1.05±0.10),经方差分析,差异有统计学意义(F =84.583,P =0.000)。对照组1、对照组2与控制组比较,差异无统计学意义(P >0.05),实验组1 miR-206 mRNA相对表达量较对照组1显著升高(P <0.05),实验组2较对照组2显著降低(P <0.05),提示miR-206 mimics和inhibitor细胞转染有效。另外,对照组1的YAP1 mRNA相对表达量为(1.08±0.18)、对照组2为(0.99±0.12)、实验组1为(0.47±0.06)、实验组2为(1.68±0.19)、控制组为(1.00±0.16),经方差分析,差异有统计学意义(F =25.662,P =0.000),实验组1较对照组1降低(P <0.05),实验组2较对照组2升高(P <0.05)。Western blotting检测结果显示,对照组1的YAP1蛋白相对表达量为(0.58±0.08)、对照组2为(0.59±0.05)、实验组1为(0.31±0.04)、实验组2为(0.84±0.06)、控制组为(0.59±0.09),经方差分析,差异有统计学意义(F =28.324,P =0.000),实验组1较对照组1降低(P <0.05),实验组2较对照组2升高(P <0.05)(见

图4 各组YAP1蛋白的表达
为进一步验证该信号机制,笔者在细胞中转染siUCA1的同时转染miR-206 inhibitor,对照组不做处理,实验组1转染siUCA1,实验组2转染siNC和miR-206 inhibitor的阴性对照,实验组3转染siUCA1和miR-206 inhibitor。对照组miR-206 mRNA相对表达量为(1.05±0.11)、实验组1为(2.45±0.15)、实验组2为(2.37±0.25)、实验组3为(1.16±0.12),经方差分析,差异有统计学意义(F =62.351,P =0.000),实验组1较对照组升高(P <0.05),促进了miR-206的表达;实验组3较实验组2降低,抑制了miR-206的表达(P <0.05)。对照组YAP1 mRNA相对表达量为(1.09±0.16)、实验组1为(0.45±0.07)、实验组2为(0.43±0.08)、实验组3为(0.96±0.13),经方差分析,差异有统计学意义(F =24.863,P =0.000),实验组1较对照组降低(P <0.05),抑制YAP1 mRNA的表达,实验组3较实验组2升高(P <0.05),恢复YAP1的表达。Western blotting检测结果显示,对照组YAP1蛋白相对表达量为(0.67±0.08)、实验组1为(0.42±0.06)、实验组2为(0.43±0.10)、实验组3为(0.74±0.10),经方差分析,差异有统计学意义(F =11.503,P =0.003),实验组1 YAP1蛋白相对表达量较对照组降低(P <0.05),抑制YAP1蛋白的表达,实验组3较实验组2升高,恢复了YAP1蛋白的表达(P <0.05)(见

图5 各组YAP1蛋白表达
各组24 h、48 h、72 h、96 h的OD值比较,经重复测量设计的方差分析,结果:①不同时间点的OD值有差异(F =232.034,P =0.000);②各组的OD值有差异(F =24.691,P =0.000);③各组的OD值变化趋势有差异(F =8.123,P =0.000)(见
组别 | 24 h | 48 h | 72 h | 96 h |
---|---|---|---|---|
对照组 | 0.19±0.05 | 0.32±0.03 | 0.52±0.06 | 0.93±0.06 |
实验组1 | 0.21±0.04 | 0.27±0.04 |
0.36±0.0 |
0.58±0.0 |
实验组2 | 0.21±0.04 | 0.25±0.03 | 0.35±0.07 | 0.56±0.10 |
实验组3 | 0.22±0.03 | 0.30±0.03 |
0.51±0.0 |
0.86±0.0 |
注 : ①与对照组比较,P <0.05; ②与实验组2比较,P <0.05。

图6 各组NH13细胞流式细胞图
近年来,越来越多的研究证实了lncRNAs通过调控细胞的增殖、分化、迁移侵袭等生物学进程参与癌症的进
miRNAs也是一种非编码RNA且高度保守,长度只有20~25个核苷酸,能通过与靶基因mRNA结合调控蛋白表达,参与多种细胞生物学过
YAP1表达水平升高往往促进癌症的进展,相关研究表明YAP1能够促进结直肠癌上皮间质转化和血管生
综上所述,本研究阐明了lncRNA UCA1在OCSS中通过靶向miR-206调控YAP1的表达,介导OSCC细胞增殖和凋亡,这一分子机制的发现为OSCC的诊断和治疗提供了新思路。然而,鉴于lncRNAs的多功能靶向作用,lncRNA UCA1在OSCC中更详细的分子机制还有待进一步探索,对其在临床诊断治疗中的应用还需更多的研究和论证。
参 考 文 献
ZHANG L, MENG X, ZHU X W, et al. Long non-coding RNAs in oral squamous cell carcinoma: biologic function, mechanisms and clinical implications[J]. Molecular Cancer, 2019, 18(1): 102. [百度学术]
CHI A C, DAY T A, NEVILLE B W. Oral cavity and oropharyngeal squamous cell carcinoma-an update[J]. CA Cancer J Clin, 2015, 65(5): 401-421. [百度学术]
ALVES A M, DIEL L F, LAMERS M L. Macrophages and prognosis of oral squamous cell carcinoma: a systematic review[J]. J Oral Pathol Med, 2018, 47(5): 460-467. [百度学术]
ZHAO W, CUI Y, LIU L W, et al. Splicing factor derived circular RNA circuhrf1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop[J]. Cell Death & Differentiation, 2020, 27(3): 919-933. [百度学术]
SAFI A F, GROCHAU K, DREBBER U, et al. A novel histopathological scoring system for patients with oral squamous cell carcinoma[J]. Clinical Oral Investigations, 2019, 23(10): 3759-3765. [百度学术]
ARUN G, DIERMEIER S D, SPECTOR D L. Therapeutic targeting of long non-coding RNAs in cancer[J]. Trends in Molecular Medicine, 2018, 24(3): 257-277. [百度学术]
MOMEN-HERAVI F, BALA S. Emerging role of non-coding RNA in oral cancer [J]. Cell Signal, 2018, 42: 134-143. [百度学术]
RANSOHOFF J D, WEI Y, KHAVARI P A. The functions and unique features of long intergenic non-coding RNA[J]. Nat Rev Mol Cell Biol, 2018, 19(3): 143-157. [百度学术]
WANG M Q, ZHU W J, GAO P. New insights into long non-coding RNAs in breast cancer: biological functions and therapeutic prospects[J]. Exp Mol Pathol, 2021, 120: 104640. [百度学术]
LORENZI L, AVILA COBOS F, DECOCK A, et al. Long noncoding RNA expression profiling in cancer: challenges and opportunities[J]. Genes Chromosomes Cancer, 2019, 58(4): 191-199. [百度学术]
LI Y, ZENG Q G, QIU J L, et al. Long non-coding RNA UCA1 promotes breast cancer by upregulating ptp1b expression via inhibiting miR-206[J]. Cancer Cell Int, 2019, 19: 275. [百度学术]
WANG C J, ZHU C C, XU J, et al. The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs[J]. Mol Cancer, 2019, 18(1): 115. [百度学术]
HE C, LU X W, YANG F, et al. lncRna UCA1 acts as a sponge of miR-204 to up-regulate CXCR4 expression and promote prostate cancer progression[J]. Biosci Rep, 2019, 39(5): DOI: 10.1042/BSR20181465. [百度学术]
GOU L Y, LIU M Y, XIA J, et al. BMP9 Promotes the proliferation and migration of bladder cancer cells through up-regulating lncRNA UCA1[J]. Int J Mol Sci, 2018, 19(4): 1116. [百度学术]
DUAN Q Y, XU M, WU M, et al. Long noncoding RNA UCA1 promotes cell growth, migration, and invasion by targeting miR-143-3p in oral squamous cell carcinoma[J]. Cancer Medicine, 2020, 9(9): 3115-3129. [百度学术]
NIU X Y, YANG B, LIU F, et al. lncRna HOXA11-AS promotes OSCC progression by sponging miR-98-5p to upregulate YBX2 expression[J]. Biomedicine & Pharmacotherapy, 2020, 121: 109623. [百度学术]
SHAO T R, ZHENG Z N, CHEN Y C, et al. lncRna AC007271. 3 promotes cell proliferation, invasion, migration and inhibits cell apoptosis of OSCC via the Wnt/β-catenin signaling pathway[J]. Life Sciences, 2019, 239: 117087. [百度学术]
YANG Y X, CHEN D, LIU H, et al. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the Akt/mTOR pathway in oral squamous cell carcinoma[J]. Cell Death & Disease, 2019, 10(2): 1-16. [百度学术]
YANG Y T, WANG Y F, LAI J Y, et al. Long non-coding RNA UCA 1 contributes to the progression of oral squamous cell carcinoma by regulating the Wnt/β-catenin signaling pathway[J]. Cancer Science, 2016, 107(11): 1581-1589. [百度学术]
FANG Z, ZHAO J F, XIE W H, et al. lncRna UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by suppressing miR-184 expression[J]. Cancer Medicine, 2017, 6(12): 2897-2908. [百度学术]
DAOUD A Z, MULHOLLAND E J, COLE G, et al. MicroRNAs in pancreatic cancer: biomarkers, prognostic, and therapeutic modulators[J]. BMC Cancer, 2019, 19(1): 1130. [百度学术]
ALI SYEDA Z, LANGDEN S S S, MUNKHZUL C, et al. Regulatory mechanism of microrna expression in cancer[J]. International Journal of Molecular Sciences, 2020, 21(5): 1723. [百度学术]
LIAO M, PENG L. MiR-206 may suppress non-small lung cancer metastasis by targeting CORO1C[J]. Cellular & Molecular Biology Letters, 2020, 25(1): 1-13. [百度学术]
WANG Y, XU H T, SI L H, et al. MiR-206 inhibits proliferation and migration of prostate cancer cells by targeting cxcl11[J]. the Prostate, 2018, 78(7): 479-490. [百度学术]
WANG P, GU J L, WANG K J, et al. miR-206 inhibits thyroid cancer proliferation and invasion by targeting RAP1B[J]. Journal of Cellular Biochemistry, 2019, 120(11): 18927-18936. [百度学术]
WANG Y Y, TIAN Y J. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer[J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 2018, 26(6): 923-931. [百度学术]
SUN Z Q, OU C L, LIU J B, et al. YAP1-induced malat1 promotes epithelial-mesenchymal transition and angiogenesis by sponging miR-126-5p in colorectal cancer[J]. Oncogene, 2019, 38(14): 2627-2644. [百度学术]
GUO L W, CHEN Y T, LUO J, et al. YAP 1 overexpression is associated with poor prognosis of breast cancer patients and induces breast cancer cell growth by inhibiting pten[J]. FEBS Open Bio, 2019, 9(3): 437-445. [百度学术]
HUANG Y, ZHANG K W, LI Y H, et al. The dlg1-as1/miR-497/YAP1 axis regulates papillary thyroid cancer progression[J]. Aging (Albany NY), 2020, 12(22): 23326-23336. [百度学术]
TU B, YAO J, FERRI-BORGOGNO S, et al. YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma[J]. JCI insight, 2019, 4(21): e130811. [百度学术]
OMORI H, NISHIO M, MASUDA M, et al. YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma[J]. Science Advances, 2020, 6(12): DOI: 10.1126/sciadv.aay3324. [百度学术]
LI C X, YE J S, ZHANG Z J, et al. Long non-coding RNA rbm5-as1 promotes the aggressive behaviors of oral squamous cell carcinoma by regulation of miR-1285-3p/YAP1 axis[J]. Biomedicine & Pharmacotherapy, 2020, 123: 109723. [百度学术]
OMORI H, NISHIO M, MASUDA M, et al. YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma[J]. Sci Adv, 2020, 6(12): DOI: 10.1126/sciadv.aay3324. [百度学术]