摘要
全冠修复是大面积牙体缺损最常用的修复方式。随着材料的发展,氧化锆陶瓷的出现解决了口腔传统全瓷材料强度不足的问题。全解剖式氧化锆冠(以下简称全锆冠)的机械性能比起传统玻璃陶瓷全冠已经有了很大的进步,但在临床应用时仍沿用烤瓷冠或传统全瓷冠的牙体预备原则。已有研究表明,咬合面厚度为0.5 mm的全锆冠可以满足临床需求;但轴面预备量、向聚合度、颈缘形态和宽度等方面相关文献报道有限且结论尚不统一。此外,随着透明氧化锆的快速发展,其牙体预备原则更缺乏统一的标准。因此,该文通过综述全锆冠的牙体预备原则的研究进展,为全锆冠的临床牙体预备提供参考。
氧化锆陶瓷因其良好的生物相容性和机械性能,在全冠修复中得到越来越广泛的应用。优越的机械性能(断裂韧性、强度和硬度
全瓷冠修复的成功受到多种因素的影响。其中,全瓷冠的咬合面厚度是影响应力分布和抗折性能的主要因素之
全锆冠咬合面牙体预备量并没有定论。根据目前的报道来看,普通全锆冠至少需要0.5 mm的修复空间,情况特殊时(如:夜磨牙、基牙变色等)需根据实际情况加大牙体预备量。故临床应用时牙体预备量应为0.5~1.0 mm。
临床常按照解剖形态均匀预备或者进行非解剖式(牙尖角度=0°)预备咬合面形态。HABIB
两个相对的预备轴向表面之间的收敛角度被称为向聚合度(total occlusal convergence, TOC),是预备角度的两
这些研究绝大多数都是体外研究,而不是基于可靠的临床试验。虽然TOC的减小增加了修复体的固位力,但因预备的技术困难很难在临床上实现TOC低值(2~5°),还可能导致黏接水门汀静水压的增加,从而对多余水门汀的溢出产生负面影
临床使用过程中发生的牙冠折裂模式表明,裂纹常起源于牙冠的凹面或是颈
传统全瓷材料制作的全瓷边缘较金属边缘强度略差,且较难加工成刃状。临床上全瓷冠多见使用肩台或凹槽边缘。随着氧化锆陶瓷的面世及全瓷加工方式的进步,刃状边缘的全锆冠得以实现。BORELLI
郝妍
以上各种边缘设计均能满足临床需求,故临床应用时应根据修复需求选择合适的边缘设计。肩台能提供更大的断裂载荷,刃状边缘和凹槽边缘能保存更多牙体组织。在应用凹槽边缘时,凹槽的深浅对断裂载荷也有影响,深凹槽边缘设计断裂载荷更高,这可能由于深凹槽设计有更大的材料厚度和圆形内
不良的边缘或内部适合性可能导致水门汀溶解、微渗漏和牙菌斑滞留增加,从而可能导致龋齿和牙周疾病。此外,由于边缘和内表面的应力集中较高,因此边缘和内部适合性可能会影响修复体的断裂强
已有系统评
有系统评
普通氧化锆色白、通透性差。向氧化锆中添加更高含量的钇可以提高透明度,即4 mol%(4Y-PSZ)或5 mol%(5Y-PSZ)。ABDULMAJEED
较薄的边缘容易折裂,故透明氧化锆冠建议采用同普通全锆冠相同的边缘设计,即凹槽边缘或内圆角肩台,并应酌情增加预备体边缘宽度。透明氧化锆多应用于美学区的修复治疗。牙周组织的情况是影响美学效果的关键因素之一。意大利学者LOI提出的生物导向性预备技术(biologically oriented preparation technology, BOPT)主要在于进行龈下牙体预备的同时去除部分釉牙骨质界上方的龈沟内上皮组织,然后利用修复体颈部的穿龈轮廓形成新的釉牙骨质界,在修复牙体组织的同时对软组织进行塑
不同材料全冠牙体各参数比较见
修复类型 | 咬合面预备量 | 边缘设计 | 边缘宽度 |
---|---|---|---|
金属冠 | 0.8~1.5 mm | 浅凹槽边缘、刃状边缘 | 贵金属0.35~0.5 mm; 非贵金属0.5~0.8 mm |
金瓷冠 | 1.5~2.0 mm | 凹槽边缘、肩台边缘 | 前牙0.35~0.5 mm; 后牙0.7~1.0 mm |
传统全瓷冠 | 1.5~2.0 mm | 凹槽边缘、肩台边缘 | 0.8~1.0 mm |
普通全锆冠 | 0.5~1.0 mm | 凹槽边缘、内圆角肩台、刃状边缘 | 0.3~0.5 mm |
透明氧化锆冠 | 0.8~1.5 mm | 凹槽边缘、内圆角肩台 | 0.8~1.5 mm |
全锆冠已经成为大面积牙体缺损常用的修复方式。与其他全瓷材料相比,氧化锆陶瓷材料的高抗断裂性最佳。根据目前的文献研究结果,优越的抗断裂性能使得全锆冠牙体预备量可以减小至0.5~1.0 mm。临床修复时,牙科医师需根据患者实际情况对牙体预备进行合理设计。对于全锆冠抗断裂性能要求高的情况,应适当增加牙体预备量,预备体边缘选择抗折性更优的内圆角肩台设计。目前对全锆冠牙体预备的研究多是体外研究,而口内环境更加复杂多变,尚需更多的长期临床研究来提供更可靠的依据和指导。
参 考 文 献
GAUTAM C, JOYNER J, GAUTAM A, et al. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications[J]. Dalton Trans, 2016, 45(48): 19194-19215. [百度学术]
SHAHMORADI M, WAN B Y, ZHANG Z P, et al. Monolithic crowns fracture analysis: the effect of material properties, cusp angle and crown thickness[J]. Dent Mater, 2020, 36(8): 1038-1051. [百度学术]
NAKAMURA K, HARADA A, INAGAKI R, et al. Fracture resistance of monolithic zirconia molar crowns with reduced thickness[J]. Acta Odontol Scand, 2015, 73(8): 602-608. [百度学术]
赵铱民, 周永胜, 陈吉华, 等. 口腔修复学[M]. 第8版. 北京: 人民卫生出版社, 2020: 63-64. [百度学术]
CHEN Y W, MOUSSI J, DRURY J L, et al. Zirconia in biomedical applications[J]. Expert Rev Med Devices, 2016, 13(10): 945-963. [百度学术]
LAN T H, LIU P H, CHOU M M C, et al. Fracture resistance of monolithic zirconia crowns with different occlusal thicknesses in implant prostheses[J]. J Prosthet Dent, 2016, 115(1): 76-83. [百度学术]
RAMOS G F, MONTEIRO E B, BOTTINO M A, et al. Failure probability of three designs of zirconia crowns[J]. Int J Periodontics Restorative Dent, 2015, 35(6): 843-849. [百度学术]
TEKIN Y H, HAYRAN Y. Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness[J]. J Adv Prosthodont, 2020, 12(5): 283-290. [百度学术]
NARAYANAN V, NARAYANAN V, DEVANARAYANAN S A. An in vitro comparative study to assess minimal thickness required for monolithic zirconia crowns to resist fracture under load on rapid prototyped models[J]. J Contemp Dent Pract, 2020, 21(2): 183-189. [百度学术]
SORRENTINO R, TRIULZIO C, TRICARICO M G, et al. In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness[J]. J Mech Behav Biomed Mater, 2016, 61: 328-333. [百度学术]
ZIMMERMANN M, ENDER A, MEHL A. Influence of CAD/CAM fabrication and sintering procedures on the fracture load of full-contour monolithic zirconia crowns as a function of material thickness[J]. Oper Dent, 2020, 45(2): 219-226. [百度学术]
JANSEN van VUUREN L, JANSEN van VUUREN W A, BROADBENT J M, et al. Development of a bite force transducer for measuring maximum voluntary bite forces between individual opposing tooth surfaces[J]. J Mech Behav Biomed Mater, 2020, 109: 103846. [百度学术]
BULUT A C, ATSÜ S S. Occlusal thickness and cement-type effects on fracture resistance of implant-supported posterior monolithic zirconia crowns[J]. Int J Oral Maxillofac Implants, 2021, 36(3): 485-491. [百度学术]
WORNI A, KATSOULIS J, KOLGECI L, et al. Monolithic zirconia reconstructions supported by teeth and implants: 1- to 3-year results of a case series[J]. Quintessence Int, 2017, 48(6): 459-467. [百度学术]
LAN T H, PAN C Y, LIU P H, et al. Fracture resistance of monolithic zirconia crowns in implant prostheses in patients with bruxism[J]. Materials (Basel), 2019, 12(10): 1623. [百度学术]
HABIB S R, ASIRI W, HEFNE M J. Effect of anatomic, semi-anatomic and non-anatomic occlusal surface tooth preparations on the adaptation of zirconia copings[J]. J Adv Prosthodont, 2014, 6(6): 444-450. [百度学术]
SADID-ZADEH R, LI R, PATEL R, et al. Impact of occlusal intercuspal angulation on the quality of CAD/CAM lithium disilicate crowns[J]. J Prosthodont, 2020, 29(3): 219-225. [百度学术]
JØRGENSEN K D. The relationship between retention and convergence angle in cemented veneer crowns[J]. Acta Odontol Scand, 1955, 13(1): 35-40. [百度学术]
CORAZZA P H, FEITOSA S A, BORGES A L S, et al. Influence of convergence angle of tooth preparation on the fracture resistance of Y-TZP-based all-ceramic restorations[J]. Dent Mater, 2013, 29(3): 339-347. [百度学术]
ALAMMARI M R, ABDELNABI M H, SWELEM A A. Effect of total occlusal convergence on fit and fracture resistance of zirconia-reinforced lithium silicate crowns[J]. Clin Cosmet Investig Dent, 2019, 11: 1-8. [百度学术]
SCHRIWER C, GJERDET N R, AROLA D, et al. The effect of preparation taper on the resistance to fracture of monolithic zirconia crowns[J]. Dent Mater, 2021, 37(8): e427-e434. [百度学术]
EBADIAN B, FATHI A, SAVOJ M. In vitro evaluation of the effect of different luting cements and tooth preparation angle on the microleakage of zirconia crowns[J]. Int J Dent, 2021, 2021: 8461579. [百度学术]
SEYDLER B, RUES S, MÜLLER D, et al. In vitro fracture load of monolithic lithium disilicate ceramic molar crowns with different wall thicknesses[J]. Clin Oral Investig, 2014, 18(4): 1165-1171. [百度学术]
SKJOLD A, SCHRIWER C, ØILO M. Effect of margin design on fracture load of zirconia crowns[J]. Eur J Oral Sci, 2019, 127(1): 89-96. [百度学术]
ØILO M, QUINN G D. Fracture origins in twenty-two dental alumina crowns[J]. J Mech Behav Biomed Mater, 2016, 53: 93-103. [百度学术]
BORELLI B, SORRENTINO R, GORACCI C, et al. Evaluating residual dentin thickness following various mandibular anterior tooth preparations for zirconia full-coverage single crowns: an in vitro analysis[J]. Int J Periodontics Restorative Dent, 2015, 35(1): 41-47. [百度学术]
YU H Y, ZHAO Y W, LI J Y, et al. Minimal invasive microscopic tooth preparation in esthetic restoration: a specialist consensus[J]. Int J Oral Sci, 2019, 11(3): 31. [百度学术]
郝妍, 廉云敏, 付强, 等. 肩台宽度对全解剖式二氧化锆冠压缩破坏力的影响[J]. 实用口腔医学杂志, 2017, 33(4): 451-454. [百度学术]
FINDAKLY M B, JASIM H H. Influence of preparation design on fracture resistance of different monolithic zirconia crowns: a comparative study[J]. J Adv Prosthodont, 2019, 11(6): 324-330. [百度学术]
REICH S, PETSCHELT A, LOHBAUER U. The effect of finish line preparation and layer thickness on the failure load and fractography of ZrO2 copings[J]. J Prosthet Dent, 2008, 99(5): 369-376. [百度学术]
JASIM H H, FINDAKLY M B, MAHDI N A, et al. Effect of reduced occlusal thickness with two margin designs on fracture resistance of monolithic zirconia crowns[J]. Eur J Dent, 2020, 14(2): 245-249. [百度学术]
MITOV G, ANASTASSOVA-YOSHIDA Y, NOTHDURFT F P, et al. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns[J]. J Adv Prosthodont, 2016, 8(1): 30-36. [百度学术]
CAGIDIACO E F, DISCEPOLI N, GORACCI C, et al. Randomized clinical trial on single zirconia crowns with feather-edge vs chamfer finish lines: four-year results[J]. Int J Periodontics Restorative Dent, 2019, 39(6): 817-826. [百度学术]
杨欣, 李榕, 叶红强, 等. 不同刃状边缘补偿角度的两种氧化锆全瓷冠断裂强度的评价[J]. 北京大学学报(医学版), 2021, 53(2): 402-405. [百度学术]
JALALIAN E, ROSTAMI R, ATASHKAR B. Comparison of chamfer and deep chamfer preparation designs on the fracture resistance of zirconia core restorations[J]. J Dent Res Dent Clin Dent Prospects, 2011, 5(2): 41-45. [百度学术]
JUNTAVEE N, KORNRUM S. Effect of marginal designs on fracture strength of high translucency monolithic zirconia crowns[J]. Int J Dent, 2020, 2020: 8875609. [百度学术]
周怡, 管叶, 何福明. 刃状边缘全瓷冠的研究进展[J]. 口腔医学. 2020, 40(2): 188-192. [百度学术]
STACK J, MILLAR B J. Analysis of posterior zirconia crowns with vertical margin preparations[J]. Eur J Prosthodont Restor Dent, 2022, 30(1): 55-64. [百度学术]
YU H, CHEN Y H, CHENG H, et al. Finish-line designs for ceramic crowns: a systematic review and meta-analysis[J]. J Prosthet Dent, 2019, 122(1): 22-30.e5. [百度学术]
MCLEAN J W, von FRAUNHOFER J A. The estimation of cement film thickness by an in vivo technique[J]. Br Dent J, 1971, 131(3): 107-111. [百度学术]
CONTREPOIS M, SOENEN A, BARTALA M, et al. Marginal adaptation of ceramic crowns: a systematic review[J]. J Prosthet Dent, 2013, 110(6): 447-454. e10. [百度学术]
AHMED W M, SHARIATI B, GAZZAZ A Z, et al. Fit of tooth-supported zirconia single crowns-a systematic review of the literature[J]. Clin Exp Dent Res, 2020, 6(6): 700-716. [百度学术]
EUÁN R, FIGUERAS-ÁLVAREZ O, CABRATOSA-TERMES J, et al. Comparison of the marginal adaptation of zirconium dioxide crowns in preparations with two different finish lines[J]. J Prosthodont, 2012, 21(4): 291-295. [百度学术]
AHMED W M, ABDALLAH M N, MCCULLAGH A P, et al. Marginal discrepancies of monolithic zirconia crowns: the influence of preparation designs and sintering techniques[J]. J Prosthodont, 2019, 28(3): 288-298. [百度学术]
于海洋, 岳莉, 刘伟才, 等. 瓷美学修复中预备体边缘与修复体边缘的专家共识[J]. 华西口腔医学杂志, 2022, 40(2): 123-133. [百度学术]
LIANG S S, YUAN F S, LUO X, et al. Digital evaluation of absolute marginal discrepancy: a comparison of ceramic crowns fabricated with conventional and digital techniques[J]. J Prosthet Dent, 2018, 120(4): 525-529. [百度学术]
ABDULMAJEED A, SULAIMAN T, ABDULMAJEED A, et al. Fracture load of different zirconia types: a mastication simulation study[J]. J Prosthodont, 2020, 29(9): 787-791. [百度学术]
ZHANG Y, LAWN B R. Novel zirconia materials in dentistry[J]. J Dent Res, 2018, 97(2): 140-147. [百度学术]
NEJAT A H, DUPREE P, KEE E, et al. Effect of endodontic access preparation on fracture load of translucent versus conventional zirconia crowns with varying occlusal thicknesses[J]. J Prosthodont, 2021, 30(8): 706-710. [百度学术]
ELSAYED A, MEYER G, WILLE S, et al. Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging[J]. Quintessence Int, 2019, 50(5): 344-348. [百度学术]
SKJOLD A, SCHRIWER C, GJERDET N R, et al. Effect of artificial aging on high translucent dental zirconia: simulation of early failure[J]. Eur J Oral Sci, 2020, 128(6): 526-534. [百度学术]
LAWSON N C, JURADO C A, HUANG C T, et al. Effect of surface treatment and cement on fracture load of traditional zirconia (3Y), translucent zirconia (5Y), and lithium disilicate crowns[J]. J Prosthodont, 2019, 28(6): 659-665. [百度学术]
CHO Y E, LIM Y J, HAN J S, et al. Effect of yttria content on the translucency and masking ability of yttria-stabilized tetragonal zirconia polycrystal[J]. Materials (Basel), 2020, 13(21): 4726. [百度学术]
王莹, 刘欣然, 刘峰. 生物导向性预备技术的临床研究与应用现状[J]. 口腔颌面修复学杂志, 2021, 22(5): 390-394. [百度学术]
施亦菲, 吴珺华. 生物导向型预备技术的研究进展[J]. 口腔医学, 2021, 41(8): 755-760. [百度学术]
AGUSTÍN-PANADERO R, SERRA-PASTOR B, LOI I, et al. Clinical behavior of posterior fixed partial dentures with a biologically oriented preparation technique: a 5-year randomized controlled clinical trial[J]. J Prosthet Dent, 2021, 125(6): 870-876. [百度学术]