摘要
动脉粥样硬化(AS)是大多数心血管疾病的主要病理基础,是一种由于脂质沉积、泡沫细胞形成等多种因素诱发的慢性无菌性炎症过程。巨噬细胞作为AS病变的主要免疫细胞群,在所有阶段都发挥着关键作用。因此,调控巨噬细胞活动可能成为调节AS进程的有效方法。近年来,随着对细胞程序性死亡的研究逐渐深入,巨噬细胞程序性死亡在AS的发生、转归过程中的重要作用逐渐成为热点。巨噬细胞程序性死亡是由胞内相关基因调控的分子程序所介导的死亡过程,包括凋亡、焦亡、自噬、坏死性凋亡、铁死亡及PARP-1依赖性细胞死亡等。该文对巨噬细胞程序性死亡的基本机制及其各种程序性死亡间的相互作用在AS中的研究进展进行综述,为AS的防治提供新策略。
动脉粥样硬化(Atherosclerosis, AS)是大多数心血管疾病的主要病理基础。自20世纪80年代以来,我国AS性心血管疾病发病率不断上升,其中以AS性心脏病和缺血性脑卒中为主要类
细胞凋亡是指机体细胞受到生理或病理性刺激后,为维持细胞内环境稳态,在有关基因的调控下发生的一种程序性死亡模式。细胞凋亡在形态学上常表现为核染色质于核膜聚集、固缩,进而出现胞膜起泡、胞浆浓缩及凋亡小体形成。细胞凋亡的分子机制主要包括细胞应激激活线粒体途径诱导凋亡,以及通过激活细胞表面的死亡受体(death receptor, DR)触发细胞凋亡两种途径。其中,线粒体途径是线粒体膜间蛋白细胞色素C释放到细胞质中触发凋亡蛋白酶激活因子1,活化Caspase-9导致DNA片段化从而诱导细胞凋亡。DR途径则通过肿瘤坏死因子(tumor necrosis factor, TNF)受体1、TNF相关凋亡诱导配体、FAS受体等,促进接头蛋白募集及FAS相关死亡域蛋白结合,激活Caspase-8,进而诱导细胞凋
细胞焦亡最早见于感染革兰阴性菌的巨噬细胞中,在形态学及分子机制上介于凋亡和坏死之间。其分子机制主要包括Caspase-1依赖的经典焦亡途径和Caspase-4、Caspase-5、Caspase-11依赖的非经典途
细胞自噬是一种进化保守的亚细胞过程,是指在外界环境影响下,胞内蛋白及受损细胞器等被输送到溶酶体进行降解,从而实现细胞器循环再利用的自我消化过
坏死性凋亡是一种在凋亡受抑制的条件下激活的、非依赖Caspase途径的细胞程序性死亡模式。形态学上,主要以胞体增大、细胞器肿胀、细胞膜破裂及细胞内容物溢出为特征。坏死性凋亡可被DR配体和诱导DR配体表达的刺激激活,胞内外信号通过受体相关蛋白1(receptor interacting protein kinase 1, RIPK1)激活RIPK3和混合谱系激酶结构域样蛋白(mixed lineage kinase domain-like protein, MLKL),诱导MLKL膜易位形成阳离子通道,导致膜破裂和损伤相关模式分子分泌,诱导炎症反
铁死亡是铁依赖的毒性脂质活性氧簇的聚集和多不饱和脂肪酸的消耗所诱发的一种新型程序性死亡模式。形态学上,主要表现为胞膜完整性破坏、线粒体萎缩及线粒体嵴减少甚至消失。铁死亡的分子途径主要包括以下三种:①通过抑制谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)抑制小分子过氧化物和某些脂质过氧化物降解,抑制脂质过氧化,诱导铁死亡;②通过抑制胱氨酸谷氨酸转运受体降低谷胱甘肽胞内水平,导致过氧化物酶活性降低,细胞抗氧化能力下降,最终导致铁死亡;③通过p53介导的铁死亡,p53基因可抑制编码胱氨酸谷氨酸转运受体系统的基因表
PARP-1依赖性细胞死亡是一种基于DNA损伤及PARP-1激活的程序性细胞坏死形式。形态学上,既不会导致质膜破裂或肿胀,也不会诱导凋亡小体和自噬小体的形
巨噬细胞凋亡在AS的斑块进展、斑块稳定性维持中发挥关键作用。AS病变早期,巨噬细胞常以胞吞作用吞噬并脂化游离脂质,减轻内皮下脂质沉积,减少继发性坏死并可发挥胞葬作用清除凋亡细胞,从而提高斑块的稳定性。在病变进展期,当斑块内巨噬细胞的吞噬能力降低或因凋亡导致其绝对数量减少,残存巨噬细胞胞内脂质超负荷时,凋亡细胞无法及时清除,会诱发继发性坏死并加重斑块周围炎症反
早在2010年DUEWELL
巨噬细胞自噬参与AS早期斑块中泡沫细胞的形成,KUMAR
坏死性凋亡是一种依赖于RIPK1/RIPK3/MLKL轴介导的细胞程序性死亡模式,研究表明通过调节巨噬细胞坏死性凋亡可一定程度上控制AS进展。报道显示,AS斑块不稳定者体内RIPK1、RIPK3的表达可出现明显上调,而RIPK1可同时参与凋亡及坏死性凋亡途径,因此相比较而言,坏死性凋亡途径的下游介质RIPK3和MLKL或许具有更高的特异性。近年来的研究主要围绕下调RIPK3和MLKL表达,抑制巨噬细胞坏死性凋亡,以延缓AS进
AS斑块中的微血管破裂后,巨噬细胞吞噬受损红细胞,巨噬细胞发生铁超载,干扰素γ暴露增多,炎症反应加剧,导致斑块稳定性降低。AS斑块内出血、铁沉积、脂质过氧化等特征性改变均可导致铁超
在AS进展的全过程中,巨噬细胞程序性死亡的多种模式均可发挥关键性作用。其中,在AS病变的不同发展阶段,巨噬细胞凋亡对AS病变进展发挥双向作用,而其他形式的巨噬细胞程序性死亡多加剧AS炎症反应。研究显示,AS病变中的多种巨噬细胞程序性死亡形式间存在着相互作用的分子机制。其中,AS病变中巨噬细胞自噬对于细胞焦亡、细胞凋亡的调节机制有较多的研究报道,如LIU
AS发生、发展过程中涉及多种巨噬细胞程序性死亡模式,包括巨噬细胞凋亡、焦亡、自噬、坏死性凋亡和铁死亡等,其在AS中的存在形式多样,且存在相互联系。深入了解与研究巨噬细胞程序性死亡,有助于阐明AS及相关心血管疾病的分子机制,揭示其在AS发病中的角色,为防治AS寻找新方向、新靶点。
参 考 文 献
赵冬. 新中国成立70年来我国人群血脂流行病学研究回顾与进展[J]. 中国医药, 2019, 14(10): 1441-1444. [百度学术]
BOADA-ROMERO E, MARTINEZ J, HECKMANN B L, et al. The clearance of dead cells by efferocytosis[J]. Nat Rev Mol Cell Biol, 2020, 21(7): 398-414. [百度学术]
XU Y, ZHANG Y, XU Y, et al. Activation of CD137 signaling promotes macrophage apoptosis dependent on p38 MAPK pathway-mediated mitochondrial fission[J]. Int J Biochem Cell Biol, 2021, 136: 106003. [百度学术]
GUO J, QIU X, ZHANG L, et al. Smurf1 regulates macrophage proliferation, apoptosis and migration via JNK and p38 MAPK signaling pathways[J]. Mol Immunol, 2018, 97: 20-26. [百度学术]
GAO J N, CHEN X T, WEI P C, et al. Regulation of pyroptosis in cardiovascular pathologies: role of noncoding RNAs[J]. Mol Ther Nucleic Acids, 2021, 25: 220-236. [百度学术]
ZENG C Y, LI C G, SHU J X, et al. ATP induces caspase-3/gasdermin E-mediated pyroptosis in NLRP3 pathway-blocked murine macrophages[J]. Apoptosis, 2019, 24(9-10): 703-717. [百度学术]
MAI F Y, HE P Y, YE J Z, et al. Caspase-3-mediated GSDME activation contributes to cisplatin- and doxorubicin-induced secondary necrosis in mouse macrophages[J]. Cell Prolif, 2019, 52(5): e12663. [百度学术]
WU M Y, LU J H. Autophagy and macrophage functions: inflammatory response and phagocytosis[J]. Cells, 2019, 9(1): 70. [百度学术]
CAO W Y, LI J H, YANG K P, et al. An overview of autophagy: mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3): 304-322. [百度学术]
EVANS T D, JEONG S J, ZHANG X Y, et al. TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis[J]. Autophagy, 2018, 14(4): 724-726. [百度学术]
LAZARO I, LOPEZ-SANZ L, BERNAL S, et al. Nrf2 activation provides atheroprotection in diabetic mice through concerted upregulation of antioxidant, anti-inflammatory, and autophagy mechanisms[J]. Front Pharmacol, 2018, 9: 819. [百度学术]
ZHOU W, YUAN J Y. Necroptosis in health and diseases[J]. Semin Cell Dev Biol, 2014, 35: 14-23. [百度学术]
KOIKE A. Molecular mechanism underlying inflammatory cell death via necroptosis in M1 macrophages[J]. Yakugaku Zasshi, 2020, 140(12): 1427-1432. [百度学术]
STOCKWELL B R, FRIEDMANN ANGELI J P, BAYIR H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. [百度学术]
CUI Y, ZHANG Z L, ZHOU X, et al. Microglia and macrophage exhibit attenuated inflammatory response and ferroptosis resistance after RSL3 stimulation via increasing Nrf2 expression[J]. J Neuroinflammation, 2021, 18(1): 249. [百度学术]
ZHOU Y X, LIU L H, TAO S F, et al. Parthanatos and its associated components: promising therapeutic targets for cancer[J]. Pharmacol Res, 2021, 163: 105299. [百度学术]
ROBINSON N, GANESAN R, HEGEDŰS C, et al. Programmed necrotic cell death of macrophages: focus on pyroptosis, necroptosis, and parthanatos[J]. Redox Biol, 2019, 26: 101239. [百度学术]
XUE Q, LIU X L, CHEN C P, et al. Erlotinib protests against LPS-induced parthanatos through inhibiting macrophage surface TLR4 expression[J]. Cell Death Discov, 2021, 7(1): 181. [百度学术]
KOJIMA Y, VOLKMER J P, MCKENNA K, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis[J]. Nature, 2016, 536(7614): 86-90. [百度学术]
FANG S H, SUN S, CAI H X, et al. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1+/- mice display increases atherosclerotic plaque stability[J]. Theranostics, 2021, 11(19): 9358-9375. [百度学术]
RUAN Z M, CHU T S, WU L Y, et al. miR-155 inhibits oxidized low-density lipoprotein-induced apoptosis in different cell models by targeting the p85α/AKT pathway[J]. J Physiol Biochem, 2020, 76(2): 329-343. [百度学术]
ZHAI C N, CONG H L, HOU K, et al. Effects of miR-124-3p regulation of the p38MAPK signaling pathway via MEKK3 on apoptosis and proliferation of macrophages in mice with coronary atherosclerosis[J]. Adv Clin Exp Med, 2020, 29(7): 803-812. [百度学术]
ANANDAN V, THANKAYYAN RETNABAI S K, JALEEL A, et al. Cyclophilin A induces macrophage apoptosis and enhances atherosclerotic lesions in high-fat diet-fed hyperglycemic rabbits[J]. FASEB Bioadv, 2021, 3(5): 305-322. [百度学术]
DUEWELL P, KONO H, RAYNER K J, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals[J]. Nature, 2010, 464(7293): 1357-1361. [百度学术]
XU S, CHEN H W, NI H E, et al. Targeting HDAC6 attenuates nicotine-induced macrophage pyroptosis via NF-κB/NLRP3 pathway[J]. Atherosclerosis, 2021, 317: 1-9. [百度学术]
WANG Y T, FANG C Y, XU L, et al. Polybrominated diphenyl ether quinone exposure induces atherosclerosis progression via CD36-mediated lipid accumulation, NLRP3 inflammasome activation, and pyroptosis[J]. Chem Res Toxicol, 2021, 34(9): 2125-2134. [百度学术]
WANG X, HU Y, WANG Y G, et al. CLEC5A knockdown protects against cardiac dysfunction after myocardial infarction by suppressing macrophage polarization, NLRP3 inflammasome activation, and pyroptosis[J]. Biochem Cell Biol, 2021, 99(5): 655-665. [百度学术]
KUMAR S, NANDURI R, BHAGYARAJ E, et al. Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation[J]. Autophagy, 2021, 17(9): 2273-2289. [百度学术]
WU H, FENG K, ZHANG C, et al. Metformin attenuates atherosclerosis and plaque vulnerability by upregulating KLF2-mediated autophagy in apo
MA C R, WU H, YANG G Y, et al. Calycosin ameliorates atherosclerosis by enhancing autophagy via regulating the interaction between KLF2 and MLKL in apolipoprotein E gene-deleted mice[J]. Br J Pharmacol, 2022, 179(2): 252-269. [百度学术]
TAO H, YANCEY P G, BLAKEMORE J L, et al. Macrophage SR-BI modulates autophagy via VPS34 complex and PPARα transcription of Tfeb in atherosclerosis[J]. J Clin Invest, 2021, 131(7): e94229. [百度学术]
FANG S H, WAN X, ZOU X Y, et al. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway[J]. Cell Death Dis, 2021, 12(1): 88. [百度学术]
COORNAERT I, HOFMANS S, DEVISSCHER L, et al. Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis[J]. Expert Opin Drug Discov, 2018, 13(6): 477-488. [百度学术]
MARTINET W, COORNAERT I, PUYLAERT P, et al. Macrophage death as a pharmacological target in atherosclerosis[J]. Front Pharmacol, 2019, 10: 306. [百度学术]
KARUNAKARAN D, GEOFFRION M, WEI L H, et al. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis[J]. Sci Adv, 2016, 2(7): e1600224. [百度学术]
ZHAO W W, LI C X, ZHANG H, et al. Dihydrotanshinone I attenuates plaque vulnerability in apolipoprotein E-deficient mice: role of receptor-interacting protein 3[J]. Antioxid Redox Signal, 2021, 34(5): 351-363. [百度学术]
COLIJN S, MUTHUKUMAR V, XIE J, et al. Cell-specific and athero-protective roles for RIPK3 in a murine model of atherosclerosis[J]. Dis Model Mech, 2020, 13(1): dmm041962. [百度学术]
KAPRALOV A A, YANG Q, DAR H H, et al. Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death[J]. Nat Chem Biol, 2020, 16(3): 278-290. [百度学术]
YANG Z, SHI J H, CHEN L, et al. Role of pyroptosis and ferroptosis in the progression of atherosclerotic plaques[J]. Front Cell Dev Biol, 2022, 10: 811196. [百度学术]
LIU J R, WANG C, LI J S, et al. Autophagy blockage promotes the pyroptosis of ox-LDL-treated macrophages by modulating the p62/Nrf2/ARE axis[J]. J Physiol Biochem, 2021, 77(3): 419-429. [百度学术]
PENG Q, LIU H H, LUO Z S, et al. Effect of autophagy on ferroptosis in foam cells via Nrf2[J]. Mol Cell Biochem, 2022, 477(5): 1597-1606. [百度学术]
XIAO Q Q, CHE X Y, CAI B, et al. Macrophage autophagy regulates mitochondria-mediated apoptosis and inhibits necrotic core formation in vulnerable plaques[J]. J Cell Mol Med, 2020, 24(1): 260-275. [百度学术]
CEOLOTTO G, GIANNELLA A, ALBIERO M, et al. miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways[J]. Cardiovasc Res, 2017, 113(13): 1627-1638. [百度学术]
OUIMET M, EDIRIWEERA H, AFONSO M S, et al. microRNA-33 regulates macrophage autophagy in atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1058-1067. [百度学术]
LIU T, WANG L Q, LIANG P P, et al. USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy[J]. Cell Mol Immunol, 2021, 18(10): 2431-2442. [百度学术]
WU W X, WANG X J, BERLETH N, et al. The autophagy-initiating kinase ULK1 controls RIPK1-mediated cell death[J]. Cell Rep, 2020, 31(3): 107547. [百度学术]