Vol. 27 No.24 Oct. 2017

DOI: 10.3969/j.issn.1005-8982.2017.24.010 文章编号: 1005-8982(2017)24-0049-04

诱导型一氧化氮合酶和缺氧诱导因子 -1α 与尖锐湿疣发生、发展的相关性研究

吴然¹,贾敏¹,唐挺¹,马尊峰¹,贺爱娟¹,孙蔺波¹,胡文韬¹,曾义燕¹,冯浩² (1.贵阳中医学院第一附属医院 皮肤科,贵州 贵阳 550001; 2.湖南省人民医院 皮肤科,湖南 长沙 410005)

摘要:目的 检测尖锐湿疣(CA)组织中诱导型一氧化氮合酶(iNOS)与缺氧诱导因子 -1α (HIF- 1α)的表达,以明确其在 CA 发生、发展中的临床意义。方法 收集 50 例 CA 和 20 例正常包皮组织,采用免疫组织化学法检测组织中 iNOS 与 HIF- 1α 的表达并与 CD34 表达进行相关分析。结果 50 例 CA 患者中,iNOS 阳性 50 例(100%),表现为表皮全层细胞均为 iNOS 阳性表达;对照组 20 例正常皮肤中 iNOS 阳性 14 例(70%),iNOS 阳性表达主要位于表皮基底层,且呈弱阳性表达,CA 患者皮损中 iNOS 灰度值为(97.985 ± 20.320)高于对照组(73.017 ± 15.633)(P<0.05)。50 例 CA 患者中 42 例 HIF- 1α 阳性(84%),高于对照组阳性 9 例(45%)(P<0.05);且 HIF- 1α 在 CA 患者中灰度值为(0.204 ± 0.064),高于对照组(0.135 ± 0.019)(P<0.05)。CA 患者组织中 iNOS 与 CD34 表达呈正相关(r=0.375, P=0.007);CA 患者组织中 HIF- 1α 与 CD34 表达呈正相关(r=0.393, P=0.005)。结论 iNOS 与 HIF- 1α 可能协同参与 CA 的发病和发展。

关键词: 尖锐湿疣;诱导型一氧化氮合酶(iNOS);缺氧诱导因子 $-1\alpha(HIF-1\alpha)$

中图分类号: R752 文献标识码: A

Effect of iNOS and HIF-1 α on condyloma acuminatum

Ran Wu¹, Min Jia¹, Ting Tang¹, Zun-feng Ma¹, Ai-juan He¹,
Lin-bo Sun¹, Wen-tao Hu¹, Yi-yan Zeng¹, Hao Feng²
(1. Department of Dermatology, the First Affiliated Hospital of Guiyang Medical College,
Guiyang, Guizhou 550001, China; 2. Department of Dermatology, Hunan Provincial
People's Hospital, Changsha, Hunan 410005, China)

Abstract: Objective To investigate the expression of inducible nitric oxide synthase (iNOS) and hypoxia inducible factor- 1α (HIF- 1α) and their effect on development of condyloma acuminatum (CA). Methods A total of 50 patients with CA and 20 healthy volunteers were collected. The expression of iNOS, HIF- 1α and CD34 was determined by Immunohistochemistry. Results A total of 50 cases with CA were identified as iNOS positive (100%) which were expressed in whole epidermis; 14 out of 20 volunteers (70%) were iNOS positive (weak signal) which were mainly expressed in epidermal basal cells. Gray value of iNOS in CA patients was higher than that in healthy volunteers (97.9854 \pm 20.3196 vs 73.0174 \pm 15.6330, respectively) (P< 0.05). Fortytwo out of 50 patients (84%) experienced increased expression of HIF- 1α while only 9 volunteers had positive signals (45%) (P< 0.05). Gray value of HIF- 1α in CA patients was higher than that in the control group (0.2035 \pm 0.0637 vs 0.1349 \pm 0.0194) (P< 0.05). Intimate correlation between iNOS or HIF- 1α and CD34 in CA was observed (r= 0.375 and 0.393, P< 0.05). Conclusion iNOS and HIF- 1α is involved in the pathogenesis of CA.

Keywords: condyloma acuminatum; inducible nitric oxide synthase; hypoxia inducing factor- 1α

失锐湿疣(condyloma acuminatum,CA)是由人类乳头瘤病毒(HPV)感染所致生殖器增生性损害(亚临床感染除外),在临床呈逐年增多的趋势^[1],且极易复发,组织学中常可见上皮细胞及血管异常增生。诱导型一氧化氮合酶(inducible nitric oxide,i-NOS)与组织增殖、血管增生有关^[2],缺氧诱导因子-1 α (hypoxia inducing factor-1 α ,HIF-1 α)是细胞对缺氧环境应答的重要的转录调节因子,其表达认为与组织增生有关^[3-4]。本文旨在研究 CA 组织中 i-NOS 与 HIF-1 α 的表达及其与 CA 发病与发展的相关性。

1 资料与方法

1.1 临床资料

选取 2015 年 1 月 - 2016 年 8 月贵阳中医学院第一附属医院收治的门诊患者 50 例,经临床及醋酸白实验诊断为 CA 患者,并经病理活检证实。其中,男性 28 例,女性 22 例;年龄 19~63 岁,平均 37 岁;病程 10 d~1 年。正常包皮对照组 20 例,来自同期我院泌尿外科包皮环切术者。年龄 6~18 岁,平均 10 岁。所有患者及对照组皮损组织放入 10%中性福尔马林液固定过夜,常规石蜡包埋,4μm切片覆于多聚赖氨酸处理过的玻片上备用。

1.2 方法

1.2.1 主要试剂 iNOS -抗(购自 Labvison 公司), HIF-1 α -抗和 CD34 试剂盒 (购自武汉博士德生物有限公司)。

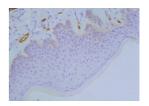
1.2.2 免疫组织化学法检测组织中 iNOS、HIF-1α 和 CD34 表达 采用 Envision 两步法进行检测:水 浴锅中 40 min 进行抗原修复,3%链霉菌抗生素 -过氧化物酶孵育 20 min 后, 滴加 iNOS、HIF-1 α 和 CD34 一抗,37℃孵育 30 min,加以 Envision/HRP 室 温孵育 30 min, DAB 显色。苏木素复染,常规封片。 1.2.3 判断标准 iNOS 阳性为细胞膜或胞浆染色 呈棕黄色或棕褐色;HIF-1α 阳性为细胞浆和(或) 细胞核内棕黄色染色。在200视野选择5个有代表 性区域,每个区域计算 200 个细胞。阳性细胞评分: 0~5%计0分,6%~35%计1分,36%~70%为2 分,>70%为3分。染色程度:0为不着色,1为弱着色 (淡棕黄色),2 为强着色(明显棕黄色)。两项评分相 加,≤2分为阴性,3分为(+),4分为(++),5分为 (+++)。随机取5个视野,免疫组化评分为定量评分 与染色程度评分之和除以 2,得分为 3~4 认为是强 阳性。阳性片使用 Image-Pro Plus 医学彩色图像分析系统进行半定量测定。

1.2.4 微血管密度计数(microvessel density, MVD) 胞核或胞浆出现淡至棕黄或棕褐色颗粒为 CD34 阳性细胞,低倍镜下选择血管分布最高区域,高倍镜下计数着色的毛细血管和微小血管,取 5 个高倍视野血管数目平均即为 MVD 值。

1.3 统计学方法

数据分析采用 SPSS 19.0 统计软件,计量资料以均数 \pm 标准差($\bar{\mathbf{x}}\pm\mathbf{s}$)表示,组间比较用 t 检验;组间阳性率比较用 χ^2 检验,相关分析采用 Pearson 直线相关分析,P<0.05 为差异有统计学意义。

2 结果


2.1 iNOS 在 CA 及正常组织中的表达

50 例 CA 患者中, iNOS 阳性 50 例(100%), 表现为表皮全层细胞均为 iNOS 阳性表达; 对照组 20 例正常皮肤中 iNOS 阳性 14 例(70%), iNOS 阳性表达主要位于表皮基底层, 且呈弱阳性表达, CA 患者皮损中 iNOS 灰度值为(97.985 ± 20.320),对照组为(73.017 ± 15.633),两组比较差异有统计学意义(t=5.528, P=0.000)。见附表和图 1。

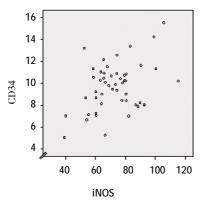
附表 两组 iNOS、HIF-1α与CD34表达比较 (x±s)

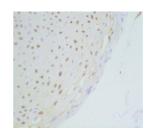
组别	例数	iNOS	HIF-1α	CD34
CA 组	50	73.017 ± 15.633	0.204 ± 0.064	9.7120 ± 2.145
对照组	20	97.985 ± 20.320	0.135 ± 0.019	3.845 ± 1.694
t值		5.528	6.889	10.928
P值		0.000	0.000	0.000

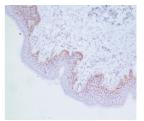
CA 组织(×400)

正常组织(×200)

图 1 iNOS 在包皮组织中的表达

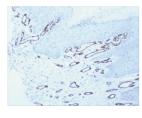

2.2 HIF-1α 和在 CA 及正常组织中的表达


50 例 CA 患者中 42 例 HIF-1 α 阳性(84%),20 例对照组中 HIF-1 α 阳性 9 例(45%),两组间差异有统计学意义(t=10.988,P=0.001);且 HIF-1 α 在 CA 患者中灰度值为(0.204 \pm 0.064),在对照组中为(0.135 \pm 0.019),两组比较差异有统计学意义(t = 6.889,P=0.000)。见附表和图 2。


2.3 CA 患者 iNOS 和 HIF-1 α 与 CD34 表达相 关性

经 Person 直线相关分析结果显示, CA 患者包皮组织中 iNOS 与 CD34 表达呈正相关(r=0.375, P=0.007); CA 患者包皮组织中 HIF-1 α 与 CD34 表达呈正相关(r=0.393, P=0.005)。见图 3、4。

图中数据分布趋势呈正相关,且呈线性上升趋势,说明 iNOS 和 HIF-1 α 有直线相关关系。


CA 组织(×400)

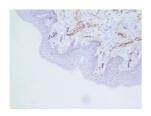

正常组织(×200)

图 2 HIF-1α 在包皮组织中的表达

图 3 CA 患者包皮组织中 iNOS 和 HIF-1α 与 CD34 表达相关性

CA 组织(×400)

正常组织(×200)

图 4 CD34 在包皮组织中的表达

3 讨论

CA^{III}由人乳头瘤病毒感染所致,常发生在肛周及生殖器部位,主要表现为菜花状、乳头状及蕈样状疣状良性增生物,传染性强、生长迅速和易复发为其主要特征。占我国性传播疾病第 2 位,且仍有不断上升趋势,严重影响患者的生活、工作及心理,故而进一步研究该疾病的发生、发展机制,为疾病的治疗提供新的思路及途径具有一定的临床研究价值。典型的 CA 组织病理常可见上皮细胞及血管异常增生,基于组织病理上细胞及血管异常增生的特性,iNOS、HIF-1α与 CA 的相关性研究进入人们的视野。

CA 虽为良性肿瘤,但其生长迅速,角质形成细胞增生明显,血运丰富,在细胞快速增长的过程中导致氧的需求量增加,造成局部缺氧微环境。一氧化氮(NO)^{IB}是机体内一种重要的信使分子,同时也是一

种重要的效应分子,其具有扩张血管、增加血管通透性和促进血管生成的作用,由 L-精氨酸经一氧化氮合酶(nitric oxide synthase,NOS)催化生成。NOS 有3种同工酶,即诱导型NOS(iNOS)、神经性NOS(nNOS)、内皮型NOS(eNOS)。正常情况下,组织中iNOS表达量很少,只有炎症反应、免疫反应及肿瘤等病理情况下iNOS的表达增多,且其诱生NO的能力高于其余两型。大量研究表明¹⁶,iNOS与肿瘤血管生成之间存在相关性。有研究¹⁷⁻⁸¹表明,其可能机制为iNOS诱导NO生成,进而通过NO扩张血管、增加血管通透性、上调MMPs并下调TIMPs从而促进血管生成。其次,NO可通过刺激血管内皮生长因子(vascular endothelial growth factor,VEGF)表达,从而促进血管生成¹⁹。除此之外,研究证实¹⁰¹,iNOS还与细胞增殖密切相关。

HIF-1^[17]是机体缺氧微环境下诱导基因表达和恢复细胞内环境稳定的 1 个核心调节因子,由 1 个 α 及 1 个 β 亚单位组成。HIF-1 α 在机体中受氧浓度调节,常氧条件下易被降解,而缺氧条件下,降解受阻,稳定增加,是 HIF-1 中真正起调节作用的功能单位。研究表明^[12],缺氧环境下,HIF-1 α 表达和合成增加,并通过与其靶基因中的缺氧反应原件-葡萄糖转运蛋白 1 (glucose transporter 1,GLUT-1)结

合,诱导 GLUT-1 大量表达,继而增加葡萄糖代谢,本研究结果显示,CA 患者中 iNOS 及 HIF-1α 阳性强度高于对照组,且 iNOS、HIF-1α 表达与 CD34 表达呈正相关。该因素在 CA 患者中可能具有改善 CA 细胞快速增殖所致的能量失衡,进而助长 CA 的快速增长的作用。此外,研究发现 [13-19],缺氧反应基因 VEGF、环氧合酶 -2 及 iNOS 上均有 HIF-1α 的结合位点,促进 3 者在缺氧环境下的表达,从而促进新血管生成,增加氧运输,改善缺氧微环境。

故而认为 CA 患者中 iNOS 及 HIF-1 α 可能通过以上途径参与 CA 的发病与发展,且两者具有协同作用。

参考文献:

- [1] 曹嘉力, 何焱玲, 张秀英. 尖锐湿疣患者 HPV 感染与细胞免疫功能的相关性[J]. 中国皮肤性病学杂志, 2012, 26(5): 383-385.
- [2] VANINI F, KASHFI K, NATH N. The dual role of iNOS in cancer[J]. Redox Biology, 2015(6): 334.
- [3] AHLUWALIA A, TARNAWSKI A S. Critical role of hypoxia sensor-HIF-1 α in VEGF gene activation. Implications for angiogenesis and tissue injury healing[J]. Current Medicinal Chemistry, 2012, 19(1): 90-97.
- [4] 张丽霞, 涂亚庭, 陶娟, 等. iNOS、CD34、PCNA 在肛周尖锐湿疣皮 损中的表达及其意义[J]. 中国麻风皮肤病杂志, 2005, 21(3): 181-184.
- [5] JANAKIRAM N B, RAO C V. Nitric oxide: Immune modulation of tumor growth [M]// Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer International Publishing, 2015: 159-175.
- [6] GOCHMAN E, MAHAJNA J, SHENZER P, et al. The expression of iNOS and nitrotyrosine in colitis and colon cancer in humans[J].

- Acta Histochemica, 2012, 114(8): 827-835.
- [7] MUNTANÉ J, BONAVIDA B. Special collection: Nitric oxide in cancer[J]. Redox Biology, 2015(6): 505.
- [8] JANAKIRAM N B, RAO C V. iNOS-selective inhibitors for cancer prevention: promise and progress[J]. Future Medicinal Chemistry, 2012, 4(17): 2193-2204.
- [9] 李勇坚, 张桂英, 肖嵘, 等. HIF-1 α 与 iNOS 在银屑病皮损中的表达及其与血管生成的关系[J]. 中国皮肤性病学杂志, 2010, 35(9): 952-957.
- [10] ZHU W, YANG B, FU H, et al. Flavone inhibits nitric oxide synthase (NOS) activity, nitric oxide production and protein Snitrosylation in breast cancer cells[J]. Biochemical & Biophysical Research Communications, 2015, 458(3): 590-595.
- [11] MAY D, ITIN A, GAL O, et al. Ero1-L alpha plays a key role in a HIF-1-mediated pathway to improve disulfide bond formation and VEGF secretion under hypoxia: implication for cancer[J]. Oncogene, 2005, 24(6): 1011-1020.
- [12] 肖汉龙. 缺氧诱导因子 -1α 和环氧合酶 2 在尖锐湿疣中的表达[J]. 中国麻风皮肤病杂志, 2012, 28(10): 690-692.
- [13] CHEN M C, LEE C F, HUANG W H, et al. Magnolol suppresses hypoxia-induced angiogenesis via, inhibition of HIF-1 α /VEGF signaling pathway in human bladder cancer cells[J]. Biochemical Pharmacology, 2013, 85(9): 1278.
- [14] BENDERRO G F, LAMANNA J C. HIF-1 α / COX-2 expression and mouse brain capillary remodeling during prolonged moderate hypoxia and subsequent re-oxygenation[J]. Brain Research, 2014 (1569): 41-47.
- [15] ZHANG F, WU W, DENG Z, et al. High altitude increases the expression of hypoxia-inducible factor-1 α and inducible nitric oxide synthase with intest-inal mucosal barrier failure in rats[J]. International Journal of Clinical & Experimental Pathology, 2015, 8(5): 5189-5195.

(王荣兵 编辑)